HY5117404B Series 4M x 4-bit CMOS DRAM with Extended Data Out

PRELIMINARY

28 DVSS 25 DQ 24 DNC 23 DCAS 22 DNC 21 DA9

DESCRIPTION

The HY5117404B is the new generation and fast dynamic RAM organized 4,194,304 x 4-bit. The HY5117404B utilizes Hyundai's CMOS silicon gate process technology as well as advanced circuit techniques to provide wide operating margins to the users. Multiplexed address inputs permit the HY5117404B to be packaged in standard 24/26 pin plastic SOJ, TSOP-II and Reverse TSOP-II.

The package size provides high system bit densities and is compatible with widely available automated testing and insertion equipments. System oriented feature includes single power supply of 5V ±10% tolerance and direct interfacing capability with high performance logic families such as Schottky TTL.

FEATURES

 Low power dissipation Max. battery back-up 2.75mW (SL-part) Max. CMOS standby 2.2mW (SL-part) 5.5mW

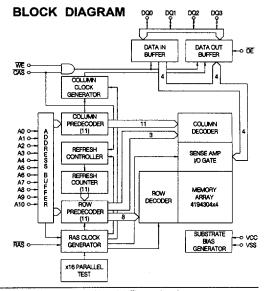
Max. TTL standby 11.0mW May onerating

max. Operating							
Speed Power							
50	798mW						
60	660mW						
70	550mW						

- Single power supply of 5V±10%
- TTL compatible inputs and outputs
- · Fast access and cycle time

Speed	t RAC	t CAC	tHPC
50	50ns	13ns	20ns
60	60ns	15ns	25ns
70	70ns	18ns	30ns

- Extended data out operation
- Multi-bit test capability
- Read-Modify-Write capability
- CAS-before-RAS, RAS-only, Hidden refresh and Self Refresh capability
- 2048 refresh cycles / 256ms (SL-part) 2048 refresh cycles / 32ms


PIN DESCRIPTION

RAS	Row Address Strobe
CAS	Column Address Strobe
WE	Write Enable
ŌĒ	Output Enable
A0-A10	Address input
DQ0-DQ3	Data Input/Output
Vcc	Power (+5V)
Vss	Ground

PIN CONNECTION

VCC 1 DC 2 NCC 3 WEC 4 RASC 5 A110 6	26 b VSS 25 b Q 24 b NC 23 b CAS 23 b CAS 22 b AS 21 b AS	VCCd 10
NCD 3 WED 4 RASC 5	25 00 24 0 NC 23 0 CAS 22 0 NC	VCCU 1 _O DCU 2 NCU 3 WEU 4 RASU 5 A110 6
WE 4	23 ECAS	
A110 6	21 1 49	A110 6
	F . -	
A101 8	19 DA8 18 DA7	A100 8 A00 9 A10 10 A20 11 A20 12
A01 9 A10 10	17 6A6	A10 10
A20 11	17 0A5 16 DA5 15 DA4	A20 11
A100 8 A00 9 A10 10 A20 11 A30 12 VCC0 13	19 0 A8 18 0 A7 17 0 A5 16 0 A5 15 0 A4 14 0 VSS	A00 9 A10 10 A20 11 A30 12 VCC0 13
	 ນ	TS
VSS≖26		
Qcd 25		
0 a 25 NC a 24 CAS a 23 NC a 22 NC a 22	3 PNC	
NCm22	5 RAS	
A9 @ 21	0 1 × VCC 2 × D 3 × NC 4 × WE 5 × RAS 6 × A11	
A8 m 19	8 410	
A8 ± 19 A7 ± 18 A8 ± 17 A5 ± 16 A4 ± 15 VSS ± 14	9 p A0 10 p A1 11 p A2 12 p A3 13 p VCC	
AD 417 A5 61 16	111 A2	
A4 15	12 A3	
VSScc 14	13 13 12 VOC	

Reverse TSOP -II

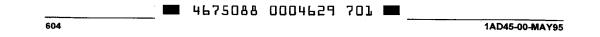
This document is a general product description and is subject to change without notice. Hyundai Electronics does not assume any responsibility for use of circuits described. No patent licences are implied. 603

4675088 0004628 875 🎟

1AD45-00-MAY95

ABSOLUTE MAXIMUM RATING

SYMBOL	PARAMETER	RATING	UNIT
Та	Ambient Temperature	0 to 70	°C
TSTG	Storage Temperature	-55 to 150	°C
VIN, VOUT	Voltage on Any Pin Relative to Vss	-1.0 to 7.0	V
Vcc	Voltage on VCC Relative to Vss	-1.0 to 7.0	V
los	Short Circuit Output Current	50	mA
PD	Power Dissipation	1.0	W
TSOLDER	Soldering Temperature • Time	260 • 10	°C • sec


NOTE: Operation at or above Absolute Maximum Ratings can adversely affect device reliability.

RECOMMENDED DC OPERATING CONDITIONS

 $(TA = 0^{\circ}C \text{ to } 70^{\circ}C)$

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
Vcc	Power Supply Voltage	4.5	5.0	5.5	V
Vih	Input High Voltage	2.4	-	Vcc+1.0	V
VIL	Input Low Voltage	-1.0	-	0.8	V

NOTE: All Voltage are referenced to Vss.

DC CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	SPEED/ POWER	MIN.	MAX.	UNIT	NOTE
111	Input Leakage Current (Any Input Pins)	$Vss \le VIN \le Vcc+1.0$, All other pins not under test = "	Vss	-10	10	μA	
ILO	Output Leakage Current (High impedance State)	Vss ≤ Vou⊺ ≤ Vcc RAS & CAS at VIH		-10	10	μA	
ICC1	Vcc Supply Current, Operating	tRC = tRC (min.)	50 60 70	-	145 120 100	mA	1,2,3
ICC2	Vcc Supply Current, Operating.	RAS & CAS at VIH(min.), other inputs ≥ VSS		-	2	mA	
ICC3	Vcc Supply Current, RAS-only refresh	tRC = tRC (min.)	50 60 70	-	145 120 100	mA	1,3
ICC4	Vcc Supply Current, EDO mode	tPC = tPC (min.)	50 60 70		130 110 90	mA	1,2,3
ICC5	Vcc Supply Current, CMOS Standby	RAS & CAS ≤ Vcc-0.2V			1 0.4	mA	5
ICC6	Vcc Supply Current, CAS-before- RAS refresh	tRC = tRC (min.)	50 60 70	-	145 120 100	mA	1,3
ICC7	Vcc Supply Current, Battery Back up	$t_{RC} = 125 \mu s$, CAS = CBR cycling or 0.2V,	tRAS ≤ 300ns	-	300	μΑ	1,4,5
	(SL-part only) WE = Vcc-0.2V, A0-A10 = Vcc-0.2V or 0.2V, DQ0-D Q3 = 0.2V, Vcc-0.2V or open		tRAS ≤ 1μs	-	500		
ICC8	Vcc Supply Current Self Refresh (SL-part only)	RAS & CAS ≤ 0.2V OE & WE & A0-A10= Vcc-0.2V or 0.2V, DQ0-DQ3=Vcc-0.2V,0.2V or open		-	300	μA	5
Vol	Output Low Voltage	IOL = 4.2mA		-	0.4	V	· · · · · ·
Voн	Output High Voltage	IOH = -5.0mA		2.4	-	V	

(TA=0°C to 70°C, Vcc=5V±10%, Vss=0V, unless otherwise noted.)

NOTE :

1. ICC1, ICC3, ICC4, ICC6 and ICC7 depend on cycle rates.

2. ICC1, ICC3, ICC4 and ICC6 depend on output loading. Specified values are obtained with the output open.

3. ICC is specified as average current. ICC1, ICC3, ICC6, Address can be changed maximum two times while RAS=VIL. ICC4, Address can be changed maximum once while CAS=VIH.

4. tras(max.)=1µs is only applied to refresh of battery backup but tras(max.)=10µs is applied to normal functional operation.

📕 4675088 0004630 423 🎟

5. ICC5(max.) =0.4mA and ICC7 and ICC8 are applied to SL-parts only.

1AD45-00-MAY95

605

AC CHARACTERISTICS

	SYMBOL		HY5117404BJC/TC/RC/SLJC/SLT/SLRC								
#	SYMBOL	PARAMETER	- 50 - 60 - 70		- 50 - 60		- 50 - 60 - 70		- 70 UN		NOTE
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	1	1	
1	tRC	Random Read or Write Cycle Time	84	-	104	-	124	-	ns	t	
2	tRWC	Read-Modify-Write Cycle Time	113	-	137	-	160	-	ns		
3	tHPC	EDO Mode Cycle Time	20	-	25	-	30	-	ns	15	
4	tHPRWC	EDO Mode Read-Modify-Write Cycle Time	61	-	70	-	78	-	ns	15	
5	tRAC	Access Time from RAS	-	50	-	60	-	70	ns	4,9,10	
6	tCAC	Access Time from CAS	-	13	-	15	-	18	ns	4.9	
7	taa	Access Time from Column Address	-	25	-	30	-	35	ns	4,10	
8	tCPA	Access Time from CAS Precharge	-	30	-	35	-	40	ns	4	
9	tCLZ	CAS to Output Low Impedance	3	-	3	-	3	-	ns	4	
10	tCEZ	Output Buffer Turn-off Delay Time from CAS	3	13	3	15	3	18	ns	5	
11	tT	Transition Time (Rise and Fall)	2	50	2	50	2	50	ns	3	
12	tRP	RAS Precharge Time	30	-	40	-	50	-	ns		
13	tRAS	RAS Pulse Width	50	10K	60	10K	70	10K	ns		
14	tRASP	RAS Pulse Width (EDO Mode)	50	200K	60	200K	70	200K	ns	· · · · ·	
15	tRSH	RAS Hold Time	13	-	15	-	18	-	ns		
16	tCSH	CAS Hold Time	40	-	45	-	50	-	ns		
17	tCAS	CAS Pulse width	8	10K	11	10K	14	10K	ns		
18	tRCD	RAS to CAS Delay	18	37	20	45	20	52	ns	9	
19	tRAD	RAS to Column Address Delay Time	10	25	15	30	15	35	ns	10	
20	tCRP	CAS to RAS Precharge Time	5	-	5	-	5	-	ns		
21	tCP	CAS Precharge Time	8	-	10	-	12	-	ns		
22	tASR	Row Address Set-up Time	0	-	0	-	0		ns		
23	tRAH	Row Address Hold time	8	-	10	-	10	-	ns		
24	tASC	Column Address Set-up Time	0	-	0	-	0	-	ns		
25	tCAH .	Column Address Hold Time	10	-	10	-	10	-	ns		
26	tAR	Column Address Hold Time from RAS	50	-	50	-	50	-	ns		
27	tRAL	Column Address to RAS Lead Time	25	-	30	-	35	•	ns		
28	tRCS	Read Command Set-up Time	0	-	0	-	0	-	ns		
29	tRCH	Read Command Hold Time Referenced to CAS	0	-	0	-	0	-	ns	6	
30	tRRH	Read Command Hold Time Referenced to RAS	0	-	0	-	0	-	ns	6	
31	tWCH	Write Command Hold Time	8	-	10	-	10	-	ns		
32	tWCR	Write Command Hold Time from RAS	45	-	50	-	55	-	ns		
33	tWP	Write Command Pulse Width	8	-	10	-	10	-	ns		
34	tRWL	Write Command to RAS Lead Time	10	-	12	-	12	-	ns		
35	tCWL	Write Command to CAS Lead Time	10	-	12	-	12	-	ns '		
36	tDS	Data-In Set-up Time	0	-	0	-	0	-	ns	7	
37	tDH	Data-In Hold Time	10	-	10	-	10	-	ns	7	
38	tDHR	Data-In Hold Time Referenced to RAS	50	-	50	-	50	•	ns		
39	tREF	Refresh Period (2048 cycles)	-	32	•	32	-	32	ms	12	
40	twcs	Write Command Set-up Time	-	256	-	256	-	256	ms	11 8	

(TA=0°C to 70°C, Vcc=5V ±10%, Vss=0V, unless otherwise noted.)

606

🖬 4675088 0004631 36T 📰

1AD45-00-MAY95

AC CHARACTERISTICS

(continued)

			HY5117404BJ/T/R/SLJ/SLT/SLR				R			
#	SYMBOL	PARAMETER	-	- 50 - 60		-	70	UNIT	NOTE	
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.		
41	tCWD	CAS to WE Delay Time	30	-	34	-	40	-	ns	8
42	tRWD	RAS to WE Delay Time	67	-	79	-	92	-	ns	8
43	tAWD	Column Address to WE Delay Time	42	-	49	-	57	-	ns	8
44	tCSR	CAS Set-up Time (CBR Cycle)	5	-	5	-	5	-	ns	
45	tCHR	CAS Hold Time (CBR Cycle)	10	-	10	-	10	-	ns	
46	tRPC	RAS to CAS Precharge Time	5	-	5	-	5	-	ns	
47	tCPT	CAS Precharge Time (CBR Counter Test)	15	•	20	-	25	-	ns	
48	tROH	RAS Hold Time Reference to OE	10	-	10	-	10	-	ns	
49	tOEA	OE Access Time	-	13	-	15	-	18	ns	
50	tOED	OE to Data Delay	13	-	15	-	18	-	ns	
51	tOEZ	Output Buffer Turn Off Delay Time from OE	3	13	3	15	3	18	ns	5
52	tOEH	OE Command Hold Time	13	-	15	-	18	-	ns	
53	tCPWD	WE Delay Time from CAS Precharge	47	-	54	-	62	-	ns	8
54	tRHCP	RAS Hold Time from CAS Precharge	30	-	35	-	40	-	ns	
55	tWRP	WE to RAS Precharge Time (CBR Cycle)	10	-	10	-	10	-	ns	
56	tWRH	WE to RAS Hold Time (CBR Cycle)	10	-	10	-	10	-	ns	
57	twrs	Write Command Set-up Time (Test Mode In)	10	-	10	-	10	-	ns	
58	tWTH	Write Command Hold Time (Test Mode In)	10	-	10	-	10		ns	
59	tRASS	RAS Pulse Width (Self Refresh Cycle)	100	-	100	-	100	-	ns	
60	tRPS	RAS Precharge Time (Self Refresh Cycle)	90	-	110	-	130	-	ns	
61	tCHS	CAS Hold Time (Self Refresh Cycle)	-50	- 1	-50	-	-50	-	ns	
62	tDOH	Output Data Hold Time	5	-	5	-	5	-	ns	
63	tREZ	Output Buffer Turn Off Delay Time from RAS	3	13	3	15	3	18	ns	5
64	tWEZ	Output Buffer Turn Off Delay Time from WE	3	13	3	15	3	18	ns	5
65	tWED	WE to Data Delay Time	13	-	15	-	18	-	ns	
66	tOEP	OE Hige Pulse Width	5	-	5	-	8	-	ns	
67	tWPE	WE Pulse Width (Hyper Page Cycle)	5	-	5	-	8	-	ns	
68	tOCH	OE to CAS Hold Time	0	-	0	-	0	-	ns	
69	tCHO	CAS Hold Time to OE	5	-	5	- 1	8	-	ns	

1AD45-00-MAY95

Powered by ICminer.com Electronic-Library Service CopyRight 2003

📕 4675088 0004632 2T6 📕 _____

607

AC CHARACTERISTICS IN TEST MODE

NOTE 13

608

			HY5117404BJC/TC/RC/SLJC/SLTC/SLR					ŀ		
#	SYMBOL	PARAMETER	-50		-50 -60		-7	70	UNIT	NOTE
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX	1	
1	tRC	Random Read or Write Cycle Time	95	-	115	-	135	-	ns	· · · · · · · · · · · · · · · · · · ·
_2	tRWC	Read-Modify-Write Cycle Time	140	-	160	-	185	-	ns	
3	tPC	Fast Page Mode Cycle Time	25	-	30	-	35	-	ns	
4	THPRWC	Fast Page Mode Read-Modify-Write Cycle Time	70	-	80	-	90	-	ns	
5	tRAC	Access Time from RAS	-	55	-	65	-	75	ns	4,9,10
6	tCAC	Access Time from CAS	-	18	-	20	-	23	ns	4.9
7	tAA	Access Time from Column Address	- 1	30	-	35	-	40	ns	4,10
8	tCPA	Access Time from CAS Precharge	-	35	-	40	-	45	ns	4
13	tRAS	RAS Pulse Width	55	10K	65	10K	75	10K	ns	
14	tRASP	RAS Pulse Width (Fast Page Mode)	55	200K	65	200K	75	200K	ns	
15	tRSH	RAS Hold Time	18	-	20	-	23	-	ns	
16	tCSH	CAS Hold Time	45	-	50	-	55	-	ns	
17	tCAS	CAS Pulse Width	18	10K	20	10K	23	10K	ns	
27	tRAL	Column Address to RAS Lead Time	30	-	35	-	40	-	ns	
41	tCWD	CAS to WE Delay Time	40	-	45	-	50	-	ns	8
42	tRWD	RAS to WE Delay Time	75	-	90	-	100	-	ns	8
43	tawd	Column Address to WE Delay Time	50	-	60	-	65	-	ns	8
49	tOEA	OE Access Time	-	18	-	20	-	23	ns	
50	tOED	OE to Data Delay	18	-	20	-	23	-	ns	
52	tOEH	OE Command Hold Time	18	-	20	-	23	-	ns	

4675088 0004633 132 📖 _____

1AD45-00-MAY95

____.

NOTE:

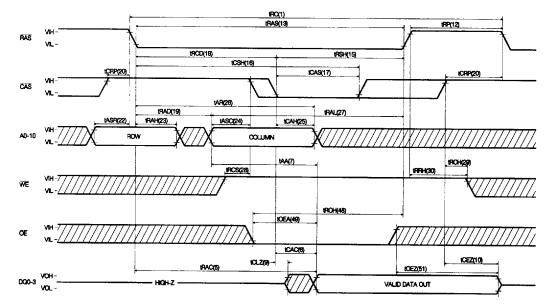
- 1. An initial pause of 200µs is required after power-up followed by any 8 refresh (RAS only CAS-before-RAS refresh) cycle before proper device operation is achieved.
- If RAS=Vss during power-up, the device could begin an active cycle. These condition results in higher current than necessary which is demanded from the power supply during power-up. It is recommended that RAS and CAS track with Vcc during power-up or be held at a valid VIH in order to minimize the power-up current.
- VIH(min.) and VIL(max.) are reference levels for measuring timing of input signals. Also, transition times are measured between VIH(min.) and VIL(max.), and are assumed to be 5ns for all inputs.
- 4. Measured at VOH=2.0V and VOL=0.8V with a load equivalent to 2 TTL loads and 100pF.
- These parameters define the time at which the output achieves the open circuit condition and is not referenced to output voltage levels.
- 6. Either tRCH or tRRH must be satisfied for a read cycle.
- 7. These parameters are referenced to CAS leading edge in early write cycles and WE leading edge in Read-Modify-Write cycles.
- 8. twcs, tRwD, tcwD, tAWD and tCPWD are not restrictive operating parameters. They are included in the data sheet as electrical characteristics only. If twcs ≥ twcs(min.), the cycle is an early write cycle and data out pin will remain open circuit (high impedance) through the entire cycle. If tRWD≥tRWD(min.), tcWD≥tCWD(min.), tAWD ≥ tAWD(min.), and tCPWD ≥ tCPWD(min.), the cycle is a Read-Modify-Write cycle and data out will contain data read from the selected cell. If neither of the above sets of conditions is satisfied, the condition of the data out (at access time) is indeterminated.
- Operation within the tRCD(max.) limit insures that tRAC(max.) can be met. tRCD(max.) is specified as a reference point only. If tRCD is greater than the specified tRCD(max.) limit, then access time is controlled by tCAC.
- 10.Operation within the tRAD(max.) limit insures that tRAC(max.) can be met. tRAD(max.) is specified as a reference point only. If tRAD is greater than the specified tRAD(max.) limit, then access time is controlled by tAA.
- 11.tREF(max.)=256ms is applied to SL-Parts (HY5117404BSLJ, HY5117404BSLT and HY5117404BSLR).
- 12.A burst of 2048 CAS-before-RAS refresh cycles must be executed within 64ms(256ms for SL-part) after exiting self refresh.
- 13. These specifications are applied to the test Mode.
- 14.If RAS goes high before CAS high going, the open circuit condition is achieved by CAS high going. If CAS goes high before RAS high going, the open circuit condition of the output is achieved by RAS high going.
- 15.tASC ≥ tCP (min.), Assume tT= 2ns

CAPACITANCE

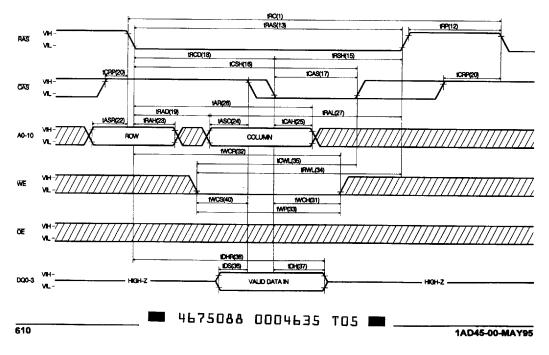
(TA=25°C, Vcc=5V±10%, Vss=0V, f=1MHz, unless otherwise noted.)

SYMBOL	PARAMETER	TYP.	MAX.	UNIT
CIN1	Input Capacitance (A0-A10)	-	5	pF
CIN2	Input Capacitance (RAS,CAS, WE, OE)	-	7	pF
CDQ	Data Input/Output Capacitance (DQ0-DQ3)	-	7	pF

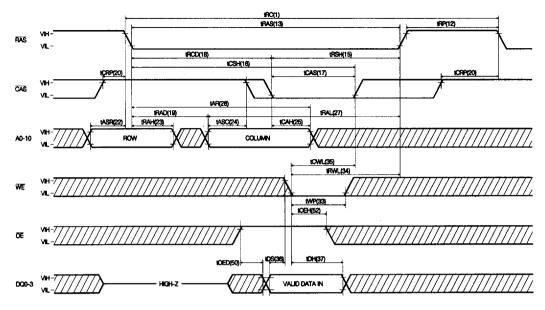
1AD45-00-MAY95

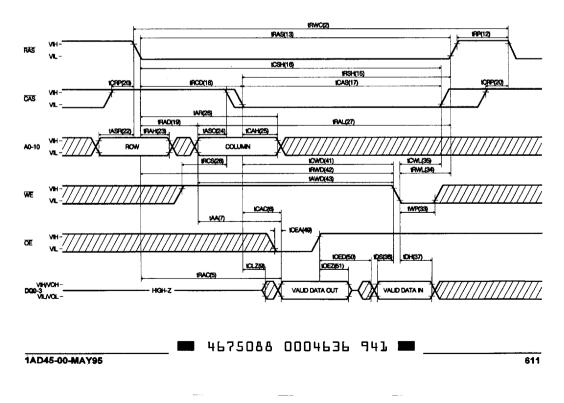

4675088 0004634 079

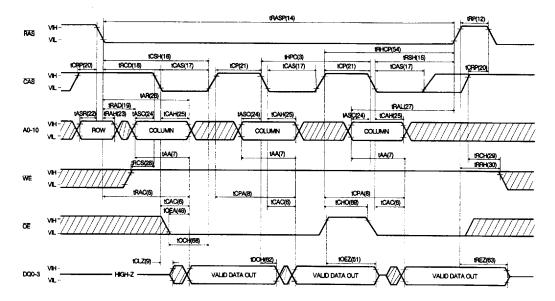
609

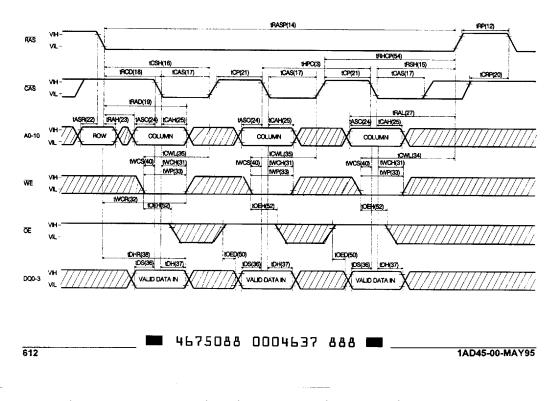

·* YUNDAI

TIMING DIAGRAM

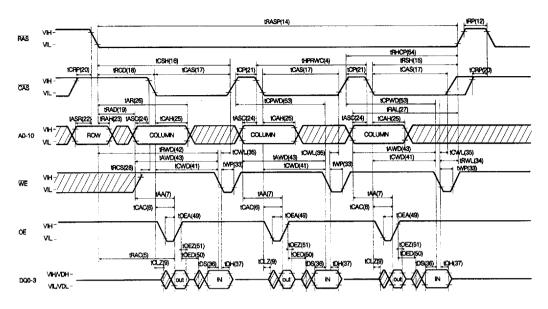

READ CYCLE


EARLY WRITE CYCLE

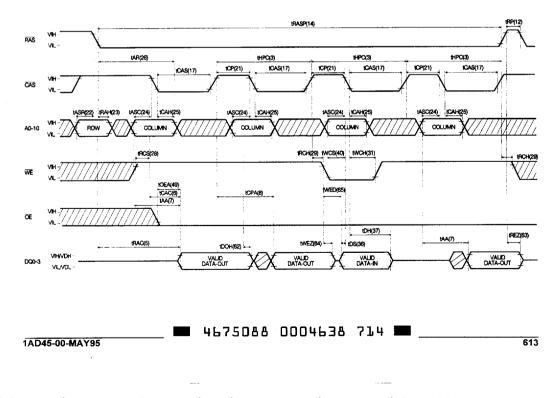

WRITE CYCLE (OE CONTROLLED WRITE)


READ-MODIFY-WRITE CYCLE

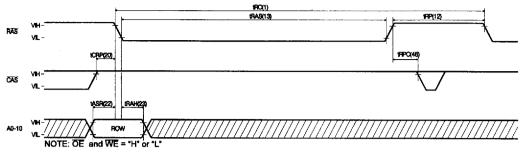
EDO MODE READ CYCLE

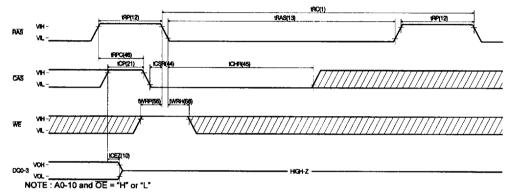


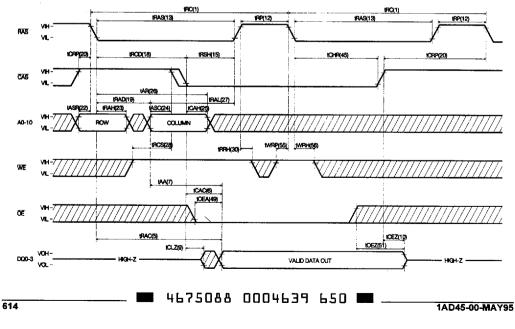
EDO MODE EARLY WRITE CYCLE

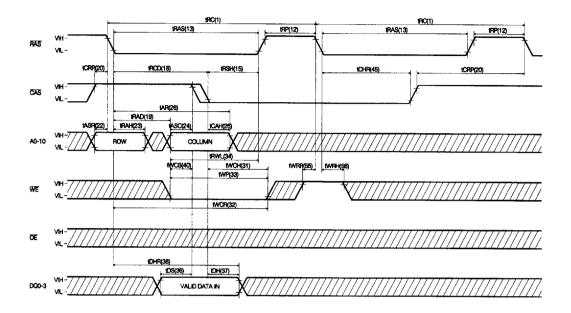


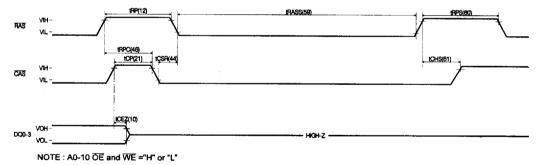
Powered by ICminer.com Electronic-Library Service CopyRight 2003

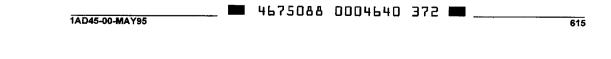

EDO MODE READ-MODIFY-WRITE CYCLE


EDO MODE READ AND WRITE MIXED CYCLE

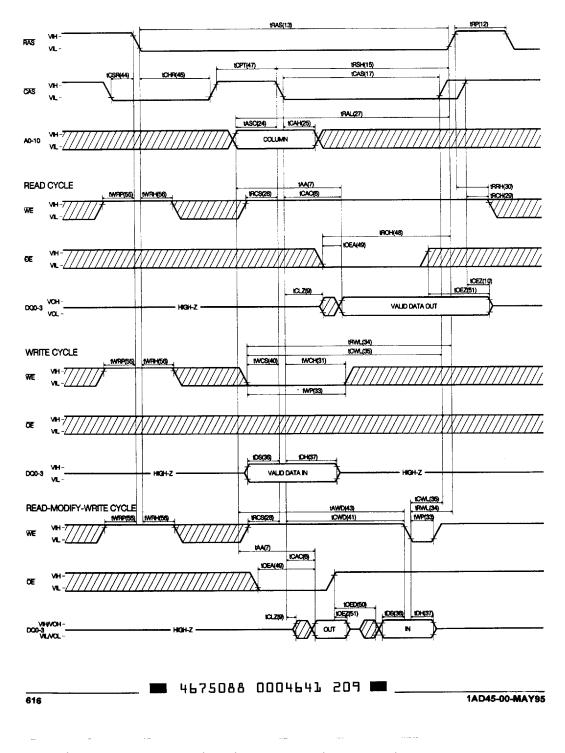

RAS-ONLY REFRESH CYCLE


CAS-BEFORE-RAS REFRESH CYCLE


HIDDEN REFRESH CYCLE (READ)

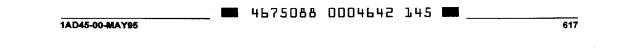


HIDDEN REFRESH CYCLE (WRITE)

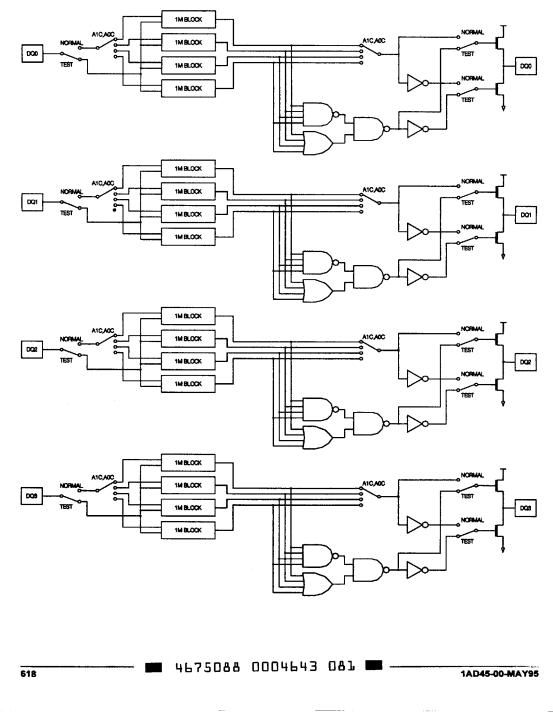


CAS-BEFORE-RAS SELF REFRESH CYCLE

CAS-BEFORE-RAS REFRESH COUNTER TEST CYCLE

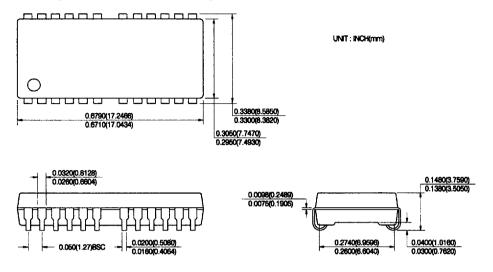


TEST MODE

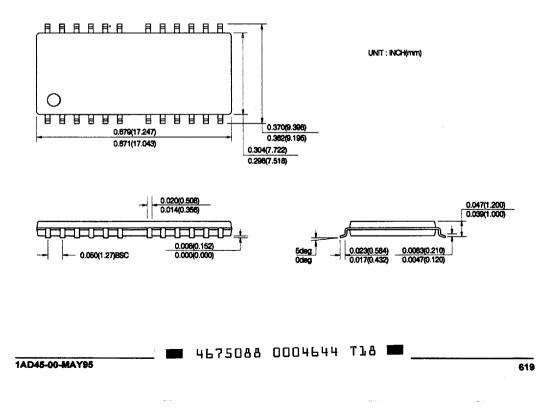

The HY511704B is a DRAM organized 4,194,304 x 4-bit. It is internally organized 1,048,576 x 16-bit. In Test Mode, data are written into 16 sectors (Each is composed of 1M bits) in parallel and retrieved the same way. Column address A0 and A1 are not used. If, upon reading, 4-bit data from 4 sectors connected to one DQ pin are equal (all "1"s or "0"s), the DQ pin indicates a "1". If they are not equal, the DQ pin indicates a "0". Belowing shows the timing diagram of the HY5117404B to enter Test Mode. In Test Mode, the 4M x 4 DRAM can be tested as if it were a 1M x 4 DRAM. WE, CAS-before-RAS cycle (Test Mode In Cycle) puts the HY5117404B into Test Mode, and CAS-before-RAS or RAS-only refresh cycle puts it back into Normal Model. In Test Mode, WE, CAS-before-RAS cycle shall be used for the refresh operation. The Test Mode function refuces test time(1/4 in case of N test pattern).

(BC(1) 19P(12) (PAS(13) #RP(12) RAS 1FIPC(48) 1CSR(1018(45) (CP(21)) CAS WTS(57) WTH(58 WF ICEZ(10) VOH DQ0-3 HGH-Z ŝ

TEST MODE IN CYCLE



BLOCK DIAGRAM IN TEST MODE



PACKAGE INFORMATION

300 mil 24/26 pin Small Outline J-form Package (J)

ORDERING INFORMATION

PART NUMBER	SPEED	POWER	PACKAGE
HY5117404BJ	50/60/70		SOJ
HY5117404BLJ	50/60/70	SL-part	SOJ
HY5117404BAT	50/60/70		TSOP-II
HY5117404BSLT	50/60/70	SL-part	TSOP-II
HY5117404BR	50/60/70		TSOP-II(R)
HY5117404BSLR	50/60/70	SL-part	TSOP-II(R)

